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Abstract

Because the CPU of a computer usually processes instructions and data faster than
they can be fetched into register from main memory, the memory cycle time is
frequently the bottleneck of a computing system. Memory interleaving can be used
to alleviate this problem. If references can be distributed over the memory banks,
then successive accessing can be overlapped in a pipelined fashion, and a speed
up of up to N can be achieved in an N bank system. Memory bank conflicts are
caused if memory bank access requests are issued to a still busy bank; they can
seriously degrade system performance. We outline a software tool, the Bank
Conflict Reducer (BCR). BCR analyzes a given program and modifies the code
automatically with the objective of reducing memory bank conflicts, thereby
improving program performance.

1. Introduction
Main memory can be viewed as a collection of a large number of cells which in turn are
organized into words. The information stored in a word can be moved into or out of the
memory in one memory operation. Ordinarily, only one access to a word can be in progress
at any one time.

The CPU of a computer usually processes instructions and data faster than they can be read
from or written to main memory. Thus, the memory cycle time, the minimal time delay
between the initiation of two memory operations, is often a major bottleneck of a system. In
memory interleaving, the memory is divided into several independent memory modules or
banks ([BK71], [D89], [H93], [K81], [LW86]); this technique can be used to close the gap
between the speeds of the CPU and the main memory.

Ideally, in a system with N banks, a speed-up of N is achieved. Unfortunately, this peak
performance often does not occur; in fact, several studies have shown that significant
performance degradation occurs as the result of Bank busy conflicts ([D89], [H93], [RH93]).
Bank busy conflicts are caused when a memory access request is issued to a still busy bank.

2. Interleaved Memory Architectures
If the main memory of a computer is structured as a collection of physically independent
memory modules, memory access operations may proceed in more than one module at the
same time. Thus, the average rate of transmission of words (bandwidth) from and to the
memory system can be increased. This is called memory interleaving; it can be used both in
uniprocessor systems and multiprocessing systems. The well known CRAY X-MP family is
an example for a system with interleaved memory ([CS86], [EE93], [L86]).
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The distribution of storage addresses across separate modules of memory can be low-order or

high-order ([D89], [H93], [HLI1]). Different ways of assigning linear addresses result in

different memory organizations. Assume that an address consists of K=kj+k) bits.

Low-order (fine) interleaving: The low-order k) bits are used to identify the bank
number, and the high-order k1 bits denote the address in a bank. Low-order interleaving
spreads contiguous memory locations across consecutive memory banks.

High-order (coarse) interleaving: The high-order ki bits are used to identify the bank
number, and the low-order k7 bits imply the address in a bank. Therefore, contiguous
memory locations are assigned to the same memory banks.

Many programs reference consecutive elements of vectors in memory. In this case, low-order

interleaving is more suitable than high-order interleaving. Thus, in the following discussions,

we only assume low-order memory interleaving.

3. Theory Underlying the Bank Conflict Reducer

Increasing the bandwidth of the memory system is probably the most attractive property of
interleaved memory systems. However, poor program design or an inefficient compiler can
dramatically degrade performance. To simplify our analysis, we make some assumptions and
define some notation.
System Assumptions
° Only the DO loops are analyzed.
In most scientific code, DO loops consume the most CPU time. This is in particular true
for memory accesses. The DO loop body is repeated several times while increasing or
decreasing the loop index.
> Only in-core programming is considered ([L95]).
This implies that the available main memory is large enough to hold all data sets associated
with the execution of the program at the same time. If this condition is violated, other
considerations (in particular, page fetching from disk) may become more important than
bank conflicts.
e As the vectors are declared, all data are loaded into main memory only one time.
Since we are only interested in the relative address, we may assume that the first element of
the first declared vector is mapped to memory bank O.
> Low-order interleaving is assumed.
Notation
° ARS: The ordered list of array references in a DO loop.
°* |ARSI: The number of arrays in ARS.
¢ Darray or Dsequence in ARS: The stride of an array. It is the number of words separating
consecutive accesses to the array.
* Sarray name or Sgequence in ARS: The start bank of an array. It is the memory bank
number of the first referenced element of that array.
° MB: The number of memory banks; they are numbered 0, 1, 2, ..., MB-1.
e CC: The memory clock cycle time, the minimum time delay required between two
successive memory operations on the same bank.
¢ {S}MB: The elements of the set S (of integers) are calculated modulo MB.

3.1 Modified Conflict-Free Conditions

Our goal is to reduce the memory bank conflicts of a given program. Ideally, we will never

encounter any bank conflict in DO loops; that situation is called conflict free (CF). There are

two types of CF situations, disjoint access sequences and non-disjoint access sequences, as
stated in ([OL85], [RH93]) for two or more vector stream accesses. We adapt the definitions
to our analytic model.

Definition 3.1: When a DO loop body is executed, the CPU continuously issues memory
access requests for accessing the elements of some array. We call these consecutive
memory access requests the access stream. '

Definition 3.2: The return number R of the access stream of some array with stride D is the
number of banks accessed by the access stream before it accesses the same bank
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R =MB/ gcd(MB, D).
Definition 3.3: A self conflict is caused by accessing a busy bank which is still in the
memory cycle time of the previous access of the same access stream. An array will
encounter a self conflict iff R*ARS|I < CC.

In a disjoint access sequence, the access stream of each array will never visit the same
memory bank again. Conflicts are caused by accessing busy banks: thus, disjoint access
sequences always yield a CF situation.

Proposition 3.4 ([OL85]): Assume IARS| = n and that no array encounters a self conflict.
By giving consecutive bank numbers to the start bank of the n arrays, disjoint access
sequences are achieved if gcd(M,D1, D2, ..., Dp) =n.

Note: The condition gcd(M,D1, D2, ..., Dp) = n in Proposition 3.4 is only sufficient but not

necessary to achieve disjoint access sequences. To see this, consider the following situation:

MB=30, CC=4, and ARS=(A,B,C). The strides of A, B, and C are 6, 10, and 25,

respectively. Assume SA=0, SB=1, and SC=2. Then gcd(30,6,10,25)=1<3, but the access

sequences are disjoint.

Nondisjoint access sequences connote that the access streams will visit the same memory
bank at least once.

Theorem 3.5: Let the arrays A and B correspond to two nondisjoint sequences and set
f=gcd(MB,DA,DB). Then defining SA=0 and SB=[(LCC/2]+ 1)*DA] mod MB will
lead to conflict free access if and only if gcd(MB / f, (DB-Da) / f) = 2*¥(LCC/2] + 1).
Proof: It follows that of Theorem 3 in [OL85]. In view of the page limit, we refer the reader
to [W95].

The up-shot of Theorem 3.5 is that under certain conditions, a CF situation is achievable.
Unfortunately, the probability that the conditions in Proposition 3.4 and Theorem 3.5 are
satisfied is low. As the number of referenced array increases, this probability decreases
([RH93)).

3.2 Common Methods Used to Reduce Bank Conflict

As mentioned in [L95], there are several ways which can be used to avoid certain bank
conflicts in conjunction with vector strides. These include the following.

(1) Using a prime number as the number of memory banks. The interleaved scheme is
optimal whenever the stride D of the access is relatively prime to the number of memory
banks. If MB is prime, all access strides, except multiples of MB, are relatively prime to MB.
However, almost everything in modern computers is a power of 2 ([HJ87], [R85]).

(2) Having a very large number of memory banks, at least as large as the product of the
number of cycles per memory access times the largest stride. This is a very expensive
solution.

(3) Using different mapping schemes. Several mapping schemes, such as the dynamic
storage scheme ([HL91]), the skewed scheme ([HJ87]), and the XOR scheme ([H91]),
differ from the conventional low-order or high-order and may reduce conflicts ((LSYT93]).
Unfortunately, none of these methods is under the control of the programmer.

(4) When the dimensions of matrices are declared, the programmer can add a row or column
to avoid an effective stride that is a power of two. The new matrices are slightly larger than
the original ones, but may yield much better performance for the memory system.
Example 1: Let MB = 8, CC = 4, and assume that the data are mapped to main memory
by the row-major mapping scheme. Assume the matrix is originally declared as A(0:7,0:7).
Here, consecutive accesses along a column always encounter memory bank conflicts. If
instead the matrix is declared as A(0:7, 0:8), the situation is very different as there does not
exist any conflict any longer.

(5) Choosing better start banks for each array. The start bank of an array can seriously affect
the access streams. This is because the stride of an array is a constant. 69



Example 2: Given MB=16, CC=4, and ARS=(A,B) with DA=Dp=1. For Sa=SB=0, a
conflict occurs each time we access an element of B. However, if SA=0 and SB=3, the
situation is very different: no conflicts occur. Thus, the second assignment is about four

times faster than the first.

We developed a software tool that will automatically reduce memory bank conflicts; it is
called the Bank Conflict Reducer (BCR) and consists of two parts, the BCR-counter and the
BCR-reducer. The BCR-counter is a compile time counter which determines the number of
conflicts and the delay time caused by the memory bank conflicts (called conflict information)
of a target file (program). The BCR-reducer uses the fourth and fifth methods described
above to reduce the memory bank conflicts. The fourth method can reduce the self conflict
problem of some array by adding a row or a column to that array, and the fifth method can be
used in general types of conflicts.

3.3 How to Find the Cycle?

The basic assumption of the BCR-counter is as follows: Since the strides of referenced arrays
are constant, the access streams are not random. More specifically, it is possible to find a
smallest interval in the access streams so that the conflict information of the entire DO loop is
represented by the conflict information within that interval. Moreover, the length of the
interval is independent of the number of times the loop is iterated; thus, the length of the
interval is independent of the execution time.

Definition 3.6: The integer cycle is the minimum number of iterations of a DO loop which

have to be executed to get the full conflict information.
The access stream of an array can be divided into several consecutive subaccess streams. The

first subaccess stream consists of the accessed bank numbers of the first to the cycleth
iteration, the second subaccess stream consists of the accessed bank numbers of the
(cycle+1)th to the (2*cycle)th iteration. The remaining subaccess streams are formed in a
similar way. The relative bank numbers of each subaccess stream will be equal.

Theorem 3.7: Let IARSI=n. Then
cycle = MB / gcd(MB, D2-D1, D3-D2,..., Dp-D1).
Proof: In view of the page limit, we refer the reader to [W95].

Example 3: Given MB = 16, CC = 4 and ARS = (A, B, C). Let Sp=0, SB=1, SC=2.
DO I =1, 100, 2
C(5*I) = A(I) + B(3*I)
END DO I
By Theorem 3.7, cycle is equal to 4. Fig. 3.1 shows the access streams. We find that the
relative bank numbers of every subaccess stream are the same.

Every cycle iterations, the subaccess streams have the same relative bank numbers. We first
obtain the sub-conflict information by executing the DO loop body cycle times. Then we
determine the full conflict information, without executing the entire DO loop, by multiplying
the sub-conflict number and the sub-delay time by the total number of iterations, divided by
cycle. That is why the BCR-counter is a compile time counter.

Determining the Bank Repeat Number

We use the fourth and fifth methods to reduce the memory bank conflicts. The fourth method
can be used to solve the self conflict problem and avoid potentially conflict-generating factors,
namely powers of two. On the other hand, the fifth method works well after we eliminate the
potential for conflicts, strides of powers of two, from the DO loop. When applying the fifth
method, we first add 1 to the start bank of some array, and keep the others unchanged;
second, we use the BCR-counter to determine the conflict information of this new start bank
assignment. Finally, we compare the conflict information of each combination. The
assignment that generates the least number of conflicts (i. ., the least delay) will be chosen.
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There 1s an obvious problem of efficiency with this approach: the number of combinations of
start banks could be very large. For example, if MB=64 and ARS= (A,B,C), there are
262,144 kinds of combination for all of Sa, SB, and S ranging from O to 63. The number
of combinations can be reduced by assuming that the start bank of the array first referenced is
always equal 10 0. In other words, the relative bank numbers of the access streams for arrays
A, B, and C with Sao=k1, SB = k2 and SC = k3 are exactly those for SpA=0, SB = kp-ki,
and SC = k3-kj.

Assume that the array A is referenced prior to the array B. If we keep the start bank of array A
constant and add 1 to the start bank of array B each time, the conflict pattern of the access
streams will be repeated after adding some number to the start bank of array B. The conflict
patterns of different combinations are considered equal if, within cycle iterations, the conflicts
in the access sireams of the start banks combination (Sp, SB) are just shifted up or down as
they occur in the access streams of the start bank combinations (SA, SB+k). The bank repeat
number, or BRN for short, of the array B is the minimum value of k for which this holds.

Theorem 3.8: If the array A is referenced prior to the array B and IARS| = 2, the bank
repeat number of B is gcd(MB, Da-DR).
Proof: In view of the page limit, we refer the reader to [W95].

Exarnple 4: Given MB=12 and CC=4. Let DA=5 and DR=2. The graphical representation
of the access streams of each combination is shown in Fig. 3.2. The conflict patterns for
SA=SB=0 and SA=0, SB=3 are the same, since the conflict in the access streams for
SA=SB=0 is just shifted one row down. However, the conflict patterns are not the same for
SA=5B=0 and SA=0, Sg=2. Although they have the same number of conflicts and the same
delay time, the direction of the conflicts (0 -> 0; S -> SB) and (8->8; SB ->Sa)is not the
same. The BRN in this example is equal to 3.

The conflict pattern will be repeated after adding the number BRN to the start bank of the later
referenced array. By definition of the conflict pattern, the same conflict pattern can have the
same number of conflicts and the same delay time; thus, we can reduce the number of
combinations by reducing the interval of the later referenced array from MB to BRN.

-

Unfortunately, Theorem 3.8 cannot be generalized to ARSI > 2, because some conflicts may
be avoided by the delay time of the previous conflicts, as the following example shows.
Example 5: Given MB=12 and CC=4, let Dao=1, D=2, and D¢=5. By Theorem 3.8, the

SRIN of array C is 4. We can see this from Fig. 3.3; the conflicts numbered 3 and 4 are
hifted 2 rows down from Fig. 3.3a to Fig. 3.3b. However, note the conflict numbered 4 in
- 3.3a; this conflict does not really occur because of the delay of the conflict numbered as
. On the other hand, in Fig. 3.3b, previous conflicts do not affect conflict 4 and conflict 4
urs.
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4. Implementation of the Bank Conflict Reducer

4.1 Assumptions and Restrictions

About the Target File

(1) A valid target file contains only declarations and DO loops.

(2) Statements are present only within the innermost DO loops.

(3) At most 10 arrays can be declared in the file.

(4) At most 4 DO loops are nested in a group. Furthermore, at most 3 groups of nested DO
loops are allowed in the file.

(5) Expressions representing array indices contain only the following operations: addition,
subtraction, or multiplication. The expressions may involve integers together with variables
and must be linear functions of the indices. 71
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Note: Restrictions (3) and (4) can be changed by modifying the definition part of programs
counter.c.and reducer.c.

4.2 Mapping Functions of Row- and Column-Major Schemes

An array A is declared by A(L1:Uq; L2:U2; ...; Lp:Up) and Sp = k.
For both row- and column-major mapping, the bank number for the element A(I1,12,...,In) is
given by

{addrA(I1,12,...In) }iB 4.2.1)
If the accesses to array elements are not random (by assumption, the strides of the referenced
arrays are constants), the bank number can be determined in a much easier way. Define Dim-
stride(k) to be the difference of the bank numbers of two consecutive elements in dimension k
of the array. For our n-dimensional array A, Dim-stride(k) is given by

n
{ T WeLird) by
i=k+1
if the row-major mapping scheme is performed; for column-major mapping, Dimstride(k) is
given by
k-1

{ T WiLi-) }yp

i=1

Real-stride(I) is the difference of the bank numbers of two consecutive accesses as the loop
variable I increases by its stride; for the array A it is determined by

{ Dim-stride(k)*loop_I_stride*array_A_stride }yg
where k corresponds to the sequence of I in the referenced array A.

With the functions Dim-stride(k) and Real-stride(I) defined as above, the bank number of the
next access of array A can be computed as the bank number of the previous access plus Real-
stride(I) of array A as the loop I increases by its stride. Thus, we just need to compute the
bank number of the first access by (4.2.1), then the bank numbers of subsequent accesses
can be obtained by adding a constant.

4.3 Special Modifications
4.3.1 If (Cycle*IARSI) Is Less Than cycle

Consider the following example.
Example 6: Given MB=16, CC=4, and SA=0.

DO I =1, 100

A(I) = A(I+1)

END DO I
By Theorem 3.8, cycle is 1. But in fact, the cycle iterations are not enough to reflect the entire
conflict information of the DO loop.

If we consider cycle=1, the Total Conflict Number is 100*1=100. However, for cycle=2, we
see that memory bank 2 will not encounter conflicts. It is reasonable to keep the product
cycle*|ARSI greater than or equal to clock cycle time. Therefore, we make this adjustment if
cycle*|ARSl is less than the clock cycle time.

4.3.2 Different Conflicts Within Two Special Intervals

Consider the following example.
Example 7: Given MB = 12, CC = 4.

A(1:105); B(1:300)

DO I = 2,100

A(I) = A(I+1) + A(I-1) + B(3*I)

END DO I
The access streams of this DO loop are shown in Fig. 4.1. We find that the conflict number in
the first cycle iterations is 1 more than that of the second cycle iterations, as shown in Figures



4.1a and 4.1b. The reason for this is that the previous conflict delay, such as 6 -> 6, shown
in Fig. 4.1a, frees the next conflict, 8->8, shown in Fig. 4.1a. Except for the first cycle
iterations, the first conflict of the following cycle iterations is freed by the delay of the
previous cycle iterations.

Therefore, we have to compare the conflict of the first CC cycle time with the last CC cycle
time. If the numbers of conflicts are different in this two intervals, we have to make
adjustments of the number of conflicts for the following cycle iterations.

4.3.3 About BRN
Theorem 3.8 is true only for IARSI = 2 and if the total interval is divisible by the cycle of the
innermost DO loop. Consider Example 4 again. We know already that the conflict pattern is
the same for SA=SB=0 and SA=0, SB=3. However, if (end - begin + 1) modulo the cycle of
the innermost DO loop is 1, as is the case for SA=SB=0, the conflict (0->0) will occur. But if
SA=0, SB=3, the conflict (5->5) will not occur. Therefore, even though the conflict patterns
of SA=SB=0 should be equal to that of SA=0, SR=3, the conflict numbers can be different.

Thus, we consider it as a special case when these two conditions are satisfied. If they are
satisfied, Theorem 3.8 will be used to determine BRN; otherwise, BRN is taken to be MB.

S. Experimental Results

We present some of our experimental results in this section. For additional results, see
[W95]. We will vary the number of memory banks MB and the clock cycle CC to observe
their influence on the total number of conflicts (CN) and the percentage of delay time (DP)
caused by the memory bank conflicts.
Example 8:

A(1:160,1:160)

B(1:160,1:160)

C(1:160,1:160)

DO I = 1,160

DO J = 1,160
DO K = 1,160
C(I,J) = A(I,K)*B(K,J)
END DO K
END DO J

END DO I
Matrix multiplication is one of the most frequently used array algorithms in computer
programming. It is obvious that the array C will always encounter the self conflict problem if
the clock cycle is equal to 4. Therefore, we use CC=4, as well as CC=3 which will not suffer
from the self conflict problem, to check the conflict results.

We draw the following conclusions from Figs. 5.1.1 and 5.1.2.

(1) It is reasonable that the number of conflict and delay time percentage for both before and
after BCR for any MB with CC=3 are always lower than those with CC=4. The average of
the delay percentage with CC=3 is 12.4 % and that with CC=4 is 46.67 %.

(2) The solid curves are always lower than or equal to the dash curves in Figs, 5.1.1 and
5.1.2. Furthermore, the solid curves are much smooterh than the dashed curves. This
implies that the BCR can keep the performance of a program stable, even in the worst case,
such as MB=10 or 16.

6. Conclusions
A software tool, the Bank Conflict Reducer (BCR), which automatically reduces bank busy
conflicts was developed and implemented. BCR frees the programmers from the burden of

thoroughly understanding complicated memory architecture and data mapping issues. Other
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methods can be used to reduce memory bank conflicts. In past years, much research
concentrated on different mapping schemes, such as dynamic storage schemes, the skewed
scheme, and the XOR scheme, with less emphasis on software issues in resolving the
problem of bank conflicts. Our method can be combined with these approaches.
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Fig. 5.1.1: The delay percentage curves for CC = 4.
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Fig. 5.1.2: The delay percentage curves for CC = 3.




